Our Publications
76) Kautu, A.; Sharma. S.; Singh, R.; Negi, S. S.; Singh, N.; Swain, N.; Nmadeo, K. V.; Kumar, N.; Gupta, P.; Bhatia, D. D.; and Joshi, K. B.; Nanoscale, 2024 .https://pubs.rsc.org/en/Content/ArticleLanding/2024/NR/D4NR02236J
75) Sharma, S.; Kautu, A.; Kumar, N.; Swain, N.; Kumar, V.; Singh, R.; Kesharwani, K.; Singh, N.; Gupta, P.; and Joshi, K. B.; ChemNanoMat, 2024, .https://aces.onlinelibrary.wiley.com/doi/10.1002/cnma.202400098
74) Kesharwani, K; Sharma, S; Kautu, A; Tripathi, S. K; Kumar, V; Joshi, K. B. ; (2025), Diatoms: A Natural Resourceof High-Valued Products and their Future Prospective , Scrivener Publishing (Wiley) page no. 81–114.
73) Singh, R.; Sharma, S.; Kautu, A.; Joshi, K. B.; Chem.Commun.2024 (Feature Article)
72) Patel, M.; Jaiswal, A.; Naseer, A.; Tripathi, A.; Joshi, A.; Minocha, T.; Kautu, A.; Gupta, S.; Joshi, K.B.; Pandey, M.; Kumar, R.; Dubey, K.; Nazir, A.; Verma, S.; Gour, N. ACS Chem.Neurosci.2024,15,916-931
71) Swain, N.; Sharma, S.; Maitra, R.; Saxena, D.; Kautu, A.; Singh, R.; Kesharwani, K.; Chopra, S.; and Joshi K. B.; “Antimicrobial peptide mimetic minimalistic approach leads to very short peptide amphiphiles-gold nanostructures for potent antibacterial activity.” ChemMedChem. 2024.
70) Sharma, S.; Kautu, A.; Singh, N.; Kumar, N.; Kumar, V.; Singh, R.; Kesharwani, K.; Swain, N.; Gupta, P.; and Joshi K.B.; “Metallopeptide-inspired pyridine-bis-tyrosine peptide conjugate mediated facile room temperature synthesis of ultrafine solid mercury nanoparticles (HgNPs) for plausible applications”. Nxmate. 2024, 4,10118.
69) Joshi K. B.; Kautu, A.; and Sharma, S.; BOOK, 2023, “पेप्टाइड नैनो तकनीकी आधारित जैव चिकित्सकीय अनुप्रयोग”.
68) Kumar, V.; Rensburg, W. ; Snoep, J. L.; Paradies, H. H.; Borrageiro, C.; Villiers, C.; Singh, R.; Joshi, K. B.; Rautenbach M.; “Antimicrobial nano-assemblies of tryptocidine C, a tryptophan-rich cyclic decapeptide, from ethanolicsolutions” Biochimie. 2023, 204, 22e3222-32
67) “Vinayak, V.; Khan, M. J.; Joshi, K. B.; Chapter 5 – “Nanoengineering diatoms in microfluidic lab on chip devices”. Elsevier, 2023, Pages 95-124, ISBN 9780128205570.
66) Khan, M. J.; Suryavanshi, V. J.; Joshi, K.B.; Gangadharan, P.; Vinayak, V.; Chapter 16 – “Photosynthetic microalgal microbial fuel cells and its future upscaling aspects” Editor(s): Mostafa El-Sheekh, Abd El-Fatah Abomohra, Handbook of Algal Biofuels, Elsevier, 2022, Pages 363- 384.
65) Gour, N.; Kshtriya, V.; Khatun, S.; Bandyopadhyay, S. Ghosh, R.; Koshti, B.; Singh, R.; Haque, A.; Bhatia, D.; Joshi, K. B.; Danil W. Boukhvalov, D. W.; Nath, S.; and Rengan A. K.; “An Isothiazolanthrone-Based Self-Assembling Anticancer Color- Changing Dye for Concurrent Imaging and Monitoring of Cell Viability”. Chem Asian J. 2023, 18, e202300044.
64) Tripathi, S. K.; Kesharwani, K.; Saxena, D.; Singh, R.; Kautu, A.; Sharma, S.; Pandey, A.; Chopra, S.; and Joshi, K. B.; “Silver- Nanoparticle-Embedded Short Amphiphilic Peptide Nanostructures and Their Plausible Application to Reduce Bacterial Infections ChemMedChem. 2023, e202200654.
63) Menon, D.; Singh, R.; Joshi, K. B.; Gupta, S.; and Bhatia D.; “Designer, Programmable DNA peptide hybrid materials with emergent properties to probe and modulate biologicalsystems”. ChemBioChem.2023,e202200580. (Review Article)
62) Kesharwani, K.; Singh, R.; Tripathi, S. K.; Kaul, G.; Akhir, A.; Saxena, D.; Kumar, V.; Mishra, N. K.; Chopra, S.; Joshi K.B. “Antimicrobial Activity of Silver Nanoparticles Loaded Biomimetic Isomeric Short Lipopeptide Nanostructures”. ChemistrySelect. 2022, 7, e202202234
61) Kshtriya, V.; Koshti, B.; Mehmood, T.; Singh, R.; Joshi, K. B.; Bandyopadhyay, S.; Boukhvalov, D. W.; Reddy J. P. and Gour N.; “A new aggregation induced emission enhancement (AIEE) dye which self-assembles to panchromatic fluorescent flowers and has application in sensing dichromate ions”. Soft Matter. 2022, 18, 3019 –3030.
60) Kesharwani, K.; Singh, R.; Kumar, N.; Singh, N.; Gupta, P.; and Joshi, K. B.; “Mercury instructed assembly (MiA): Architecting of a clathrin triskelion inspired highly functional C3-symmetric triskelion nanotorus functional structures into microtorus structures”. Nanoscale, 2022, 14, 10200-10210.
59) Ahirwar, A.; Kesharwani, K.; Deka, R.; Muthukumar, S.; Khan, M. J.; Rai, A.; Vinayak, V.; Varjani, S.; Joshi, K. B.; Morjaria, S.;“Microalgal drugs: A promising therapeutic reserve for the future”. J.Biotech. 2022, 349, 32-46.
58) Tripathi, S.K.; Kesharwani, K.; Kaul, G.; Akhir, A.; Saxena, D.; Singh, R.; Mishra, N. K.; Pandey, A.; Chopra, S.; and Joshi, K. B.; “Amyloid-β Inspired Short Peptide Amphiphile Facilitates Synthesis of Silver Nanoparticles as Potential Antibacterial Agents”. ChemMedChem. 2022, 17, e202200251, 1-8.
57) Kesharwani, K.; Kautu, A.; Sharma, S.; Singh, R.; Kumar, V.; Tripathi, S. K.; Shukla, P.; Joshi, K. B.; “Short peptide amphiphile nanostructures facilitate sunlight- induced nanowelding of gold nanosheets”. Chem. Commun. 2022, 58, 13815-13818.
56) Singh, N.; Sharma, S.; Singh, R.; Rajput, S.; Chattopadhyay, N.; Tewari, D.; Joshi K. B.; and Verma S.; “A naphthalimide-based peptide conjugate for concurrent imaging and apoptosis induction in cancer cells by utilizing endogenous hydrogen sulfide”. Chem. Sci., 2021, 12, 16085–16091.
55) Koshti, B.; Kshtriya, V.; Singh, R.; Walia, S.; Bhatia, D.; Joshi, K. B.; and Gour, N.; “Unusual Aggregates Formed by the Self-Assemble of Proline, Hydroxyproline, and Lysine”. ACS Chem. Neurosci. 2021, 12, 3237–3249.
54) Kshtriya, V.; Koshti, B.; Gangrade, A.; Haque, A.; Singh, R.; Joshi, K. B.; Bhatia D.; and Gour N.; “Self-assembly of a benzothiazolone conjugate into panchromatic fluorescent fibres and their application in cellular imaging”. New J. Chem. 2021, 45, 17211-17221.
53) Kesharwani, K.; Singh, R.; Khan, M. J.; Vinayak, V.; and Joshi, K. B.; “Hydrophobized Short Peptide Amphiphile Functionalized Gold Nanoparticles as Antibacterial Biomaterials”. ChemistrySelect. 2021, 6, 1– 8.
52) Singh, N.; Singh, R.; Sharma, S.; Kesharwani, K.; Joshi, K. B.; and Verma S.; “Transition-metal ion-mediated morphological transformation of pyridine-based peptide nanostructures ”. New J. Chem. 2021, 45, 153-161.
51) Joshi, K. B.; Vinayak, V.; Singh, R.; Kesharwani, K.; “Peptide nanotechnology: a bio inspired nano-strategy to combat with reproductive diseases”. ISSRF Newsletter, 2020, 26, 56-59.
50) Khan, M. J., Singh, R., kesharwani, K.; Shukla, P.; Bhaskar, P. V.; Joshi K. B.; and; Vinayak, V.; “Exopolysaccharides directed embellishment of diatoms triggered on plastics and other marine litter”. Sci Rep. 2020, 10, 18448.
49) Khan, M. J.; Bawra, N.; Verma, A.; Kumar, V.; Pugazhendhi, A.; Joshi, K. B.; Vinayak, V.; “Cultivation of diatom Pinnularia saprophila for lipid production: A comparison of methods for harvesting the lipid from the cells”. Bioresour. Technol. 2021, 319, 124129, ISSN 0960-8524.
48) Singh, N.; Singh, R.; Joshi, K. B.; and Verma S.; “Constitutionally Isomeric Aromatic Tripeptides: Self-Assembly and Metal-Ion Modulated Transformations”.ChemPlusChem. 2020, 85, 2001–2009.
47) Singh, N.; Singh, R.; Shukla, M.; Kaul, G.; Chopra, S.; Joshi, K. B.; and Verma S.; “Peptide Nanostructure-Mediated Antibiotic Delivery by Exploiting H2S‑Rich Environment in Clinically Relevant Bacterial Cultures”. ACS Infect. Dis. 2020, 6, 2441−2450.
46) Singh, R.; Mishra, N. K.; Singh, N.; Rawal, P.; Gupta P.; and Joshi, K. B.; “Transition metal ions induced secondary structural transformation in a hydrophobized short peptide amphiphile”. New J. Chem. 2020, 44, 9255-9263.
45) Singh, R.; Khan, M. J; Rane, J.; Gajbhiye, A.; Vinayak, V.; and Joshi, K. B.; “Biofabrication of Diatom Surface by Tyrosine-Metal Complexes:Smart Microcontainers to Inhibit Bacterial Growth”. ChemistrySelect. 2020, 5, 3091 –3097.
44) Singh, R.; Mishra, N. K.; Gupta, P.; and Joshi, K. B.; “Self-assembly of sequence shuffled short peptide amphiphile triggered by metal ions into terraced nanodome like structures”. Chem. Asian J., 2020, 15, 531- 539.
43) Diafuel©: 2018 Trademark application no 3778882. Trade Marks Journal No: 1846 , 23/04/2018, Class 4 (published) Under Project: “Construction of diatoms solar panels for bio-fuel production”. DST NANOMISSION Authors/Applicants : Vandana Vinayak;Richard Gordon; Khashti Ballabh Joshi; Benoît Schoefs.
42) Vinayak, V.; Joshi K. B.; and Sharma P. M.; Book: “Diatoms: Fundamentals & Applications Ed.: J. Seckbach& R. Gordon. Beverly,MA, USA, Wiley- Scrivener.Chapter Title: Diafuel © (diatom biofuel) vs Electric vehicles a basic comparison: A high potential renewable energy source to make India energy independent”. 2019, ISBN 13: 978-1119370215/10: 1119370213
41) Gour, N.; Kshtriya, V.; Gupta, S.; Koshti, B.; Singh, R.; Patel, D.; and Joshi, K. B.; “Synthesis and Aggregation Studies of a Pyridothiazole-Based AIEE Probe and Its Application in Sensing Amyloid Fibrillation ”. ACS Appl. Bio Mater. 2019, 2, 4442−4455.
40) Singh, R.; Suryavashi, V.; Vinayak, V; and Joshi, K. B.; “Gold-Ions-Mediated Diproline Peptide Nanocarpets and Their Inhibition of Bacterial Growth”. ChemistrySelect. 2019, 4, 5810 –5816
39) Kumar, K.; Singh, H.; Vanita, V.; Singh, R.; Joshi, K. B.; Bhargava, G.; Kumar, S.; Singh, P.; “Coronene diimide-based self-assembled (fibre-to-disc) fluorescent aggregates for visualization of latent fingerprints”. Sens. Actuators B Chem. 2019, 283, 651-658.
38) Khan, M. J.; Singh, R.; Joshi, K. B.; and Vinayak V.; “TiO2 doped polydimethylsiloxane (PDMS) and Luffa cylindrica based photocatalytic nanosponge to absorb and desorb oil in diatom solar panels”. RSC Adv. 2019, 9, 22410–22416.
37) Singh, R.; Mishra, N. K.; Kumar, V.; Vinayak, V.; Joshi, K. B.; “Transition Metal Ion–Mediated Tyrosine-Based Short-Peptide Amphiphile Nanostructures Inhibit Bacterial Growth”. ChemBioChem. 2018, 19, 1630-1637 (Classified as a Very Important Paper- VIP)
36) Gupta, S.; Singh, R.; Kumar, V.; Shukla, P.; and Joshi, K. B.; “Ornamentation of Triskelion Peptide Nanotori to Produce Gold Nanoparticle (AuNP)-Embedded Peptide Nanobangles”. Chem. Asian J. 2018, 13, 3285 – 3295.
35) Kumar, V.; Singh, R.; Thakur, S.; Joshi K. B.; and Vinayak, V.; “Doping of magnetite nanoparticles facilitates clean harvesting of diatom oil as biofuel for sustainable energy”. Mater. Res. Express. 2018, 5, 045503.
34) Kumar, V.; Kashyap, M.; Gautam, S.; Shukla, P.; Joshi, K. B.; Vinayak, V.; “Fast Fourier infrared spectroscopy to characterize the biochemical composition in diatoms”. J Biosci. 2018, 43, 717-729.
33) Gupta, S.; Kumar, A.; and Joshi K. B.; “Study of electron transfer process in aqueous methanol system by using tryptophan based short peptide – Amino acid pairs”. J. Photochem. Photobiol., A 2018, 356, 556–564.
32) Joshi, K. B.; and Co-workers, Book Chapter(RSC), 2018, 978-3-319-2-0333-1.
31) Kumar, V.; Singh, R.; and Joshi K. B.; “Biotin–avidin interaction triggers conversion of triskelion peptide nanotori into nanochains”. New J. Chem. 2018, 42, 3452-3458.
30) Gupta, S.; Kashyap, M.; Kumar, V.; Jain, P.; Vinayak V.; and Joshi K. B.; “Peptide mediated facile fabrication of silver nanoparticles over living diatom surface and its application”. J. Mol. Liq. 2018, 249, 600–608.
29) Vinayak, V.; Joshi, K. B.; Gordon, R.; and Schoefs, B.; Book CHAPTER 3: “Nanoengineering of Diatom Surfaces for Emerging Applications” The Royal Society of Chemistry (RSC), 2017, 55-78.
28) Singh, R.; Gupta, S.; Kumar, V.; and Joshi K. B.; “Hierarchical Self-Assembly of Diproline Peptide into Dumbbells and Copper-Ion- Promoted RobustDiscs”. ChemNanoMat. 2017, 3, 620 – 624.
27) Gupta, S.; Kumar, V.; and Joshi K. B.; “Solvent mediated photo-induced morphological transformation of AgNPs-peptide hybrids in water-EtOH binary solvent mixture”. J. Mol. Liq. 2017, 236, 266–277.
26) Kumar, V.; Gupta, S.; Mishra, N. K.; Singh, R.; K S Yadav S.; and Joshi K. B.; “Laser-induced fabrication of gold nanoparticles on shellac-driven peptide nanostructures”. Mater. Res. Express. 2017, 4, 035036.
25) Kumar V.; Mishra, N. K.; Gupta S.; and Joshi, K. B.; “Short Peptide Amphiphile Cage Facilitate Engineering of Gold Nanoparticles Under the Laser Field”. ChemistrySelect. 2017, 2, 211-218.
24) Vinayak V.; Kumar, V.; Kashyap, M.; and Joshi K. B.; “Fabrication of resonating microfluidics chamber for biofuel production in diatoms” ICEE, 2016, IIT-Bombay.
23) Kumar V. , Vijaya K. , Khanna , S.; Joshi, K. B.; “Aggregation propensity of amyloidogenic and elastomeric dipeptide constituents”. Tetrahedron, 2016, 72, 5369-5376.
22) Gautam, S.; Kashyap, M.; Gupta, S.; Kumar, V.; Schoefs, B.; Gordon, R.; Jeffryes, C.; Joshi K. B.; and Vinayak V.; “Metabolic engineering of TiO2 nanoparticles in Nitzschia palea to form diatom nanotubes: an ingredient for solar cells to produce electricity and biofuel”. RSC Adv. 2016, 6, 97276–97284.
21) Vinayak, V.; Kumar, V.; Kashyap, M.; Joshi, K. B.; Gordon R. and Schoefs, B.; “Fabrication of resonating microfluidic chamber for biofuel production in diatoms (Resonating device for biofuel production),” 2016, 1-6.
20) Kumar V.; Gupta S.; Rathod A.; Vinayak V; and Joshi K. B.; “Biomimetic fabrication of biotinylated peptide nanostructures upon diatom scaffold; a plausible model for sustainable energy”. RSC Adv. 2016, 6, 73692-73698.
19) Mishra, N. K.; Joshi, K. B.; Verma, S. “Modulating peptide amphiphile morphology by gold nanocolloids” J. Colloid. Inter. Sci. 2015, 455, 145.
18) Mishra N. K.; Kumar V.; and Joshi K. B.; “Thermoplasmonic effect of silver nanoparticles modulates peptide amphiphile fiber into nanowreath like assembly”. Nanoscale, 2015, 7, 20238-20248.
17) Mishra, N. K.; Kumar V.; and Joshi K. B.; “Fabrication of gold nanoparticles on biotin-ditryptophan scaffold for plausible biomedical applications”. RSC Adv. 2015, 5, 64387-64394.
16) Joshi, K. B.; Singh P.; “L-Proline induced self-assembly of indolicidin derived palindromic tripeptide”. Tetrahedron Lett. 2014, 55, 3534–3537.
15) Wagner, J.; Knau, A.; Joshi, K. B.; Heckel, A.; and Dimmeler S.; “Hypoxia Regulates the Trafficking of microRNAs in Endothelial Cells”. Circulation. 2013, 128, A14635.
14) Mishra, N. K.; Joshi, K. B.; Verma, S. “Inhibition of human and bovine insulin fibril formation by peptide conjugates” Mol.Pharmaceutics, 2013, 10 , 3903.
13) Joshi, K. B.; Vlachos, A.; Mikat, V.; Deller, T.; and Heckel, A. “Light-activatable molecular beacons with caged loop sequence” Chem.Commun. 2012, 48, 2733(title page).
12) Schäfer, F.; Joshi K. B.; Fichte, M. A. H.; Mack T.; Heckel, A. “Wavelength-selective uncaging of dA and dC residues”. Org.Lett. 2011, 13, 1450.
11) Rodrigues-Correia A.; Koeppel M. B.; Schäfer F.; Joshi, K.B.; Mack, T.; Heckel A.; “Comparison of the duplex-destabilizing effects of nucleobase-caged oligonucleotides”. Anal Bioanal Chem. 2011, 399, 441-7.
10) Joshi, K. B.; Vijaya, K. K.; Verma S. “Self-Assembled Morphologies from C2 – and C3 -Symmetric Biotin Conjugates”. J. Org. Chem. 2010, 75, 4280.
9) Joshi, K. B.; Venkatesh V.; Verma S. “Biotin interaction with human erythrocytes: contact on membrane surface and formation of self-assembled fibrous structures”. Chem. Commun. 2010, 46, 3890.
8) Joshi, K. B.; Singh, P.; Verma, S. “Fabrication of platinum nanopillars on peptide-based soft structures using a focused ion beam”. Biofabrication. 2009, 1, 025002 (6pp).
7) Joshi, K. B.; Verma, S. “Bisection of biotinylated soft spherical structures”. Biophys. Chem. 2009, 140, 129–132.
6) Joshi, K. B.; Verma, S. “Participation of aromatic side chains in diketopiperazine ensembles”. Tetrahedron Lett. 2008, 49, 4231– 4234.
5) Joshi, K. B.; Verma, S. “Ditryptophan conjugation triggers conversion of biotin fibers to soft spherical structures”. Angew. Chem. Int.Ed. 2008, 47, 2860.
4) Joshi, K. B.; Verma, S. “Sequence shuffle controls morphological consequences in a self-assembling tetrapeptide”. J. Pept. Sci. 2007, 14, 118-126.
3) Joshi, K. B.; Verma, S. and Ghosh S. “Peptide-Based Soft Materials as Potential Drug Delivery Vehicles”. Med. Chem. 2007, 3, 605- 611.
2) Joshi, K. B.; Verma, S. “Monovalent cation-promoted ordering of a glycine-rich cyclic peptide”. Tetrahedron. 2007, 63, 5602–5607.
1) Joshi, K. B.; Verma, S. “Ordered Self-assembly of a Glycine-rich Linear and Cyclic Hexapeptide: Contrasting Ultrastructural Morphologies of Fiber Growth”. Supramol Chem. 2006, 18, 405-414.